卡方分佈#

這是伽瑪分佈,其中 \(L=0.0\)\(S=2.0\)\(\alpha=\nu/2\),而 \(\nu\) 稱為自由度。如果 \(Z_{1}\ldots Z_{\nu}\) 都是標準常態分佈,則 \(W=\sum_{k}Z_{k}^{2}\) 具有(標準)卡方分佈,自由度為 \(\nu\)

標準形式(最常用於標準形式)具有 \(x\geq0\) 的支持。

\begin{eqnarray*} f\left(x;\alpha\right) & = & \frac{1}{2\Gamma\left(\frac{\nu}{2}\right)}\left(\frac{x}{2}\right)^{\nu/2-1}e^{-x/2}\\ F\left(x;\alpha\right) & = & \frac{\gamma\left(\frac{\nu}{2},\frac{x}{2}\right)}{\Gamma(\frac{\nu}{2})}\\ G\left(q;\alpha\right) & = & 2\gamma^{-1}\left(\frac{\nu}{2},q{\Gamma(\frac{\nu}{2})}\right)\end{eqnarray*}

其中 \(\gamma\) 是下不完全伽瑪函數,\(\gamma\left(s, x\right) = \int_0^x t^{s-1} e^{-t} dt\)

\[M\left(t\right)=\frac{\Gamma\left(\frac{\nu}{2}\right)}{\left(\frac{1}{2}-t\right)^{\nu/2}}\]
\begin{eqnarray*} \mu & = & \nu\\ \mu_{2} & = & 2\nu\\ \gamma_{1} & = & \frac{2\sqrt{2}}{\sqrt{\nu}}\\ \gamma_{2} & = & \frac{12}{\nu}\\ m_{d} & = & \frac{\nu}{2}-1\end{eqnarray*}

實作: scipy.stats.chi2